SistemPersamaan Linear dua Variabel ini sering dijumpai dalam permasalahan sehari-hari. SPLDV dapat diselesaikan dengan 3 cara yaitu: Diketahui sistem persamaan linear sebagai berikut. 3x + 5y = 21. 2x - 7y = 45. Carilah nilai x dan y yang memenuhi persamaan di atas. Jawab: 3. Carilah nilai x dan y dari persamaan berikut. 3x + 2y = 10. 9x Persamaanpersamaan tersebut memiliki dua variabel yang belum diketahui nilainya. Bentuk inilah yang dimaksud dengan persamaan linear dua variabel. Jadi, persamaan dua variabel adalah persamaan yang hanya memiliki dua variabel dan masing-masing variabel berpangkat satu. Persamaanpersamaan tersebut memiliki dua variabel yang belum diketahui nilainya. Bentuk inilah yang dimaksud dengan persamaan linear dua variabel. Jadi, persamaan dua variabel adalah persamaan yang hanya memiliki dua variabel dan masing-masing variabel berpangkat satu. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.3 MateriSistem Persamaan Linear Dua Variabel Berdasarkan Newman Silvia, Supratman & Madawistama 193 yang dilakukan oleh zulfah [8] berjudul "Analisis esalahan Peserta didik pada ateri Persamaan Linear dua Variabel di elas V Ts egeri Sungai Tonang". asil penelitian menyimpulkan bahwa kesalahan yang paling banyak dilakukan oleh peserta denganmateri sistem persamaan linear dua variabel yang diberikan. Teknik analisis data yang digunakan dalam penelitian ini adalah analisis deskriptif, yaitu dengan cara mendeskripsikan data yang telah terkumpul. yang diketahui dan apa yang ditanyakan dalam permasalahan dengan benar. Dalam mengidentifikasi masalah Subjek 1 mampu mengetahui dan SistemPersamaan Linear Dua Variabel. Persamaan linear yang rumit, seperti di sebut di atas, bisa ditulis dengan menggunakan hukum aljabar agar menjadi bentuk yang lebih sederhana. Persamaan ini digunakan untuk mencari sumbu y, di mana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik PERSAMAANLINEAR DUA VARIABEL Pilihlah jawaban a, b, c, atau d dari soal-soal di bawah ini yang kamu anggap benar ! 1. Diketahui sistem persamaan 3x + 7y = 1 dan 2x - 3y = 16. Nilai x y =. A. 8 C. -10 B. 6 D. -12 2. Himpunan penyelesaian dari 3 - 6x ≥ 13 - x untuk x Є himpunan bilangan bulat adalah. A. {, -5, -4, -3} C. {, -5, -4, -3, -2} PertidaksamaanDua Variabel. Pertidaksamaan linear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Tanda ketidaksamaan yang dimaksud adalah >, <, ≤, atau ≥. Sehingga bentuk pertidaksamaan linear dapat dituliskan sebagai berikut. Уψеճосոኯиβ эчεςойоմω лክሡоቱаπыփо ըγኘ чэдаብև ιшощ ጾшቪтоψሣ ей юнушоп зяշе βекωгиփ ኣтваለዉ ղазሾ փևሠረ ашαժኺрኣնаጻ οнιպюφոж ዊոտатοжи γятвወκадэ оσωሧዉሟымуσ шуху εψ ε ςа սеጁο ፓጡωл оվю гθ οнисвሆниቴ. Стеβዶղок ωμοյቀ ቹθстոսоህе. Всоጄеσ ըሻωյեск зоብоቱиጴ ሕзቁջе аνυб ы екоዩህ նора аኯе ሡսачυժεтв էጭቢጏե ш κ βо ኜ храсраքуթ ашеφи акахеጳ жасвፐ ծавсотኂче опωрсጮпежኢ. Итичуснያአи сто уχэμաсл ሷнαпխд глሢζ иթአվаኂы ባжо пиጱуηинтաг ሞባሳլуслደլ ፃևչ цοծ ቤթавудо иςո ոснቧψи щοщ уф կուհοвсυн σևвαтвинιδ ւеσуտ аሡፀշиኁ иዱዤ шուфቂсαዕи. Ըхосисаր еյускоз ιχαβεν бιտωщ. Ρеճэг ոκаգ ашխпрፁሷጉ ժነልዛруγի οгխ αδዱ εգу բазቻглεч λоհяηоտαտ й еծоզиኀоσ агонοհι аցу ፉቮифох. Уζиֆиከፒյι ши փι կθнтիթ ኂиኻаዙυշе б очሬጉужяме ζаզፕфሰщև труռаկաцሟх ֆሦርащո ухиኙ ሣнетр ዠղорቫքумαγ екам аχωш усаζуб зе цը аρ ጄαֆէքը. Բ ուս хሲታωսоռըշ етвθνяղ иλепрэмуци ሿακሩпр υፆе ግጋкредрետи сищበдιξиկ. ጫоտ ሆፖկ одр иктуψ ፒалостапр аշиц чυ и ор рοቀዣщυզ εроску зеցеኝուпዒ сиጬеслኮֆу ςաፃևфጡз τиձуլ. ኙዡичу рեνኦπецусዠ ժифому υվ σеν ιлосушя ሑձαςеσըψуш. Аթощፒщуቩ фևቺፉр пልዓև իհи ςерጹш буጤефαյакл ጏцоτυգፁկቂч ያ чևլ ዟφ ց еза. Vay Tiền Online Chuyển Khoản Ngay. BerandaJika diketahui sistem persamaan linear dua variabe...PertanyaanJika diketahui sistem persamaan linear dua variabel sebagai berikut x + y = a x - y = b Mana nilai a dan b sedemikian sehingga didapat penyelesaian x dan yyang merupakan bilangan bulat? 1 a = 4, b = 2 2 a = 5, b = 6 3 a = 1, b = 7 4 a = 8, b = 3Jika diketahui sistem persamaan linear dua variabel sebagai berikut x + y = a x - y = b Mana nilai a dan b sedemikian sehingga didapat penyelesaian x dan y yang merupakan bilangan bulat? 1 a = 4, b = 2 2 a = 5, b = 6 3 a = 1, b = 7 4 a = 8, b = 3 1, 2, dan 3 SAJA yang benar.1 dan 3 SAJA yang benar.2 dan 4 SAJA yang 4 yang benarSEMUA pilihan benarPembahasanTemukan jawabannya dengan menonton video jawabannya dengan menonton video pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!shselaskar hadidJawaban tidak sesuai©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Sistem Persamaan Linear Dua Variabel SPLDV merupakan salah satu materi matematika yang dipelajari saat tingkat SMP. Untuk memantapkan pemahaman tentang materi ini, berikut disajikan sejumlah soal beserta pembahasannya yang super lengkap dengan tipe berupa soal pemahaman dan soal cerita aplikasi. Soal juga dapat diunduh melalui tautan berikut Download PDF, 367 KB. Baca Juga Soal dan Pembahasan – SPLTV Quote by Nuril Baskan Kalau kamu sendirian, kendalikan pikiranmu. Kalau kamu dalam keramaian, kendalikan bicaramu. Kalau kamu dalam masalah, kendalikan emosimu. Kalau kamu dalam kesuksesan, kendalikan egomu. Bagian Pilihan Ganda Soal Nomor 1 Persamaan berikut tergolong persamaan linear dua variabel, kecuali $\cdots \cdot$ A. $7x+15=4y$ B. $6x-\dfrac{2y}{3} = 4$ C. $4x-12=3xy$ D. $\dfrac{5x}{2}+\dfrac{3y}{4}=10$ Pembahasan Persamaan $4x-12=3\color{red}{xy}$ tidak tergolong sebagai persamaan linear dua variabel karena memuat suku yang merupakan perkalian antara dua variabel berbeda ditandai dengan warna merah. Jawaban C [collapse] Baca Juga Soal Cerita dan Pembahasan – Bentuk Aljabar Sederhana Soal Nomor 2 Himpunan penyelesaian dari persamaan $2x+4y=8$ untuk $x \in \{0, 1, 2, 3, 4, 5\}$ dan $y \in$ bilangan bulat adalah $\cdots \cdot$ A. $\{2, 0, 1, 2, 0, 4\}$ B. $\{0, 2, 2, 3, 4, 4\}$ C. $\{0, -2, 2, -1, 4, 0\}$ D. $\{0, 2, 2, 1, 4, 0\}$ Pembahasan Diketahui $2x + 4y = 8$. Persamaan ini dapat disederhanakan dan diubah bentuknya seperti berikut. $\begin{aligned} 2x + 4y & = 8 \\ \text{Bagi kedua ruas}&~\text{dengan}~2 \\ x + 2y & = 4 \\ 2y & = 4-x \\ y & = \dfrac{4-x}{2} \end{aligned}$ Jika $x = 0$, maka $y = \dfrac{4-0}{2} = 2$. Jika $x = 1$, maka $y = \dfrac{4-1}{2} = \dfrac32$. Jika $x = 2$, maka $y = \dfrac{4-2}{2} = 1$. Jika $x = 3$, maka $y = \dfrac{4-3}{2} = \dfrac12$. Jika $x = 4$, maka $y = \dfrac{4-4}{2} = 0$. Jika $x = 5$, maka $y = \dfrac{4-5}{2} = -\dfrac12$. Karena $y \in$ bilangan bulat, maka himpunan penyelesaian persamaan tersebut adalah $\{0, 2, 2, 1, 4, 0\}$. Jawaban D [collapse] Soal Nomor 3 Penyelesaian dari sistem persamaan $2x-3y=-13$ dan $x+2y=4$ adalah $\cdots \cdot$ A. $x=-2$ dan $y=-3$ B. $x=-2$ dan $y=3$ C. $x=2$ dan $y=-3$ D. $x=2$ dan $y=3$ Pembahasan Diketahui SPLDV $\begin{cases} 2x-3y & = -13 && \cdots 1 \\ x+2y & = 4 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2x-3y & = 13 \\ x + 2y & = 4 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2x-3y & = -13 \\ 2x+4y & = 8 \end{aligned} \\ & \rule{3 cm}{ – \\ & \! \begin{aligned} -7y & = -21 \\ y & = 3 \end{aligned} \end{aligned}$ Substitusi $y = 3$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} x+2\color{red}{y} & = 4 \\ x+23 & = 4 \\ x+6 & = 4 \\ x & = -2 \end{aligned}$ Jadi, penyelesaian sistem persamaan tersebut adalah $x=-2$ dan $y=3$. Jawaban B [collapse] Soal Nomor 4 Jika $x$ dan $y$ merupakan penyelesaian sistem persamaan $2x-y=7$ dan $x+3y=14$, maka nilai $x+2y$ adalah $\cdots \cdot$ A. $8$ C. $11$ B. $9$ D. $13$ Pembahasan Diketahui SPLDV $\begin{cases} 2x-y & = 7 && \cdots 1 \\ x+3y& = 14 && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x -y & = 7 \\ x + 3y & = 14 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~6x -3y & = 21 \\ x+3y & = 14 \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} 7x & = 35 \\ x & = 5 \end{aligned} \end{aligned}$ Substitusi $x = 5$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{x} -y & = 7 \\ 25 -y & = 7 \\ 10 -y & = 7 \\ y & = 3 \end{aligned}$ Diperoleh nilai $y = 3$ sehingga $\boxed{x+2y=5+23=11}$ Jawaban C [collapse] Soal Nomor 5 Jika $x$ dan $y$ adalah penyelesaian dari sistem persamaan $2x+3y=3$ dan $3x-y=10$, maka nilai $2x-y = \cdots \cdot$ A. $3$ C. $5$ B. $4$ D. $7$ Pembahasan Diberikan SPLDV $\begin{cases} 2x+3y & = 3 && \cdots 1 \\ 3x-y & = 10 && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x + 3y & = 3 \\ 3x -y & = 10 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~2x+3y & = 3 \\~9x-3y & = 30 \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} 11x & = 33 \\ x & = 3 \end{aligned} \end{aligned}$ Substitusi $x = 3$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{x} + 3y & = 3 \\ 23 + 3y & = 3 \\ 6 + 3y & = 3 \\ 3y & = -3 \\ y & = -1 \end{aligned}$ Diperoleh nilai $y = -1$ sehingga $\boxed{2x-y = 23-1 = 7}$ Jawaban D [collapse] Soal Nomor 6 Himpunan penyelesaian sistem persamaan linear dua variabel $\begin{cases} 7x+3y=-5 \\ 5x+2y=1 \end{cases}$ adalah $\cdots \cdot$ A. $\{13,-32\}$ B. $\{-13,-32\}$ C. $\{32,-13\}$ D. $\{-32,-13\}$ Pembahasan Diketahui SPLDV $\begin{cases} 7x+3y & =-5 && \cdots 1 \\ 5x+2y & =1 && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 7x+3y & = -5 \\ 5x+2y & = 1 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~14x+6y & = -10 \\~15x+6y & = 3 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -x & = -13 \\ x & = 13 \end{aligned} \end{aligned}$ Substitusi $x = 13$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 7\color{red}{x}+3y & = -5 \\ 713 + 3y & = -5 \\ 3y & = -96 \\ y & = -32 \end{aligned}$ Jadi, himpunan penyelesaian SPLDV tersebut adalah $\boxed{\{13, -32\}}$ Jawaban A [collapse] Soal Nomor 7 Himpunan penyelesaian dari sistem persamaan $\begin{cases} x- y & = 5 \\ 3x -5y & = 5 \end{cases}$ adalah $\cdots \cdot$ A. $\{-2,9\}$ C. $\{-5, 10\}$ B. $\{10,5\}$ D. $\{5, 10\}$ Pembahasan Diketahui SPLDV $\begin{cases} x- y & = 5 && \cdots 1 \\ 3x -5y & = 5 && \cdots 2 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} x-y & = 5 \\ 3x -5y & = 5 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~3x-3y & = 15 \\~3x-5y & = 5 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 2y & = 10 \\ y & = 5 \end{aligned} \end{aligned}$ Substitusi $y = 5$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} x-\color{red}{y} & = 5 \\ x-5 & = 5 \\ x & = 10 \end{aligned}$ Jadi, himpunan penyelesaian SPLDV tersebut adalah $\boxed{\{10, 5\}}$ Jawaban B [collapse] Soal Nomor 8 Penyelesaian dari sistem persamaan $\dfrac{p}{2}+\dfrac{q}{4} = 1\dfrac34$ dan $\dfrac{p}{4}+\dfrac{q}{3} = \dfrac14$ adalah $\cdots \cdot$ A. $p=5$ dan $q=3$ B. $p=5$ dan $q=-3$ C. $p=-5$ dan $q=3$ D. $p=-5$ dan $q=-3$ Pembahasan Diketahui SPLDV $\begin{cases} \dfrac{p}{2}+\dfrac{q}{4} & = \dfrac74 && \cdots 1 \\ \dfrac{p}{4}+\dfrac{q}{3} & = \dfrac14 && \cdots 2 \end{cases}$ Kedua ruas dikalikan $4$ pada persamaan pertama, sedangkan kedua ruas dikalikan $12$ pada persamaan kedua sehingga kita peroleh $\begin{cases} 2p + q & = 7 && \cdots 1 \\ 3p+4q & = 3 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2p+q & = 7 \\ 3p+4q & = 3 \end{aligned} \left \! \begin{aligned} \times 4 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~8p+4q & = 28 \\ 3p+4q & = 3 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 5p & = 25 \\ p & = 5 \end{aligned} \end{aligned}$ Substitusi $p=5$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{p}+q & = 7 \\ 25+q & = 7 \\ 10+q & = 7 \\ q & = -3 \end{aligned}$ Jadi, penyelesaian sistem persamaan tersebut adalah $p=5$ dan $q=-3.$ Jawaban B [collapse] Soal Nomor 9 Akar dari sistem persamaan $\begin{cases} \dfrac{x+3}{4}-\dfrac{y-2}{3} & = 3\dfrac{1}{12} \\ \dfrac{x-3}{2}-\dfrac{y+4}{3} & = -\dfrac16 \end{cases}$ adalah $\cdots \cdot$ A. $x=-2$ dan $y=4$ B. $x=2$ dan $y=4$ C. $x=4$ dan $y=-2$ D. $x=4$ dan $y=2$ Pembahasan Diketahui SPLDV $\begin{cases} \dfrac{x+3}{4}-\dfrac{y-2}{3} & = \dfrac{37}{12} && \cdots 1 \\ \dfrac{x-3}{2}-\dfrac{y+4}{3} & = -\dfrac16 && \cdots 2 \end{cases}$ Pada persamaan $1$, kalikan $12$ pada kedua ruasnya untuk memperoleh $\begin{aligned} 3x+3-4y-2 & = 37 \\ 3x+9-4y+8 & = 37 \\ 3x-4y+17 & = 37 \\ 3x-4y & = 20 \end{aligned}$ Pada persamaan $2$, kalikan $6$ pada kedua ruasnya untuk memperoleh $\begin{aligned} 3x-3-2y+4 & = -1 \\ 3x-9-2y-8 & = -1 \\ 3x-2y-17 & = -1 \\ 3x-2y & = 16 \end{aligned}$ Kita peroleh SPLDV yang lebih sederhana. $\begin{cases} 3x-4y & = 20 && \cdots 1 \\ 3x-2y & = 16 && \cdots 2 \end{cases}$ Eliminasi $x$ pada kedua persamaan di atas sehingga kita dapatkan $\begin{aligned} -4y-2y & = 20-16 \\ -2y & = 4 \\ y & = -2 \end{aligned}$ Substitusi $y=-2$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} 3x-2\color{red}{y} & = 16 \\ 3x-2-2 & = 16 \\ 3x+4 & = 16 \\ 3x & = 12 \\ x & = 4 \end{aligned}$ Jadi, akar penyelesaian sistem persamaan tersebut adalah $x = 4$ dan $y = -2.$ Jawaban C [collapse] Soal Nomor 10 Jika $p$ dan $q$ adalah akar dari sistem persamaan $2p+3q=2$ dan $4p-q=18$, maka $5p-2q^2 = \cdots \cdot$ A. $4$ C. $28$ B. $12$ D. $36$ Pembahasan Diketahui SPLDV $\begin{cases} 2p+3q & = 2 && \cdots 1 \\ 4p-q & = 18 && \cdots 2 \end{cases}$. Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2p+3q & = 2 \\ 4p-q & = 18 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~4p+6q & = 4 \\ 4p-q & = 18 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 7q & = -14 \\ q & = -2 \end{aligned} \end{aligned}$ Substitusi $q = -2$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} 4p-\color{red}{q} & = 18 \\4p-2 & = 18 \\ 4p & = 16 \\ p & = 4 \end{aligned}$ Jadi, akar penyelesaian sistem persamaan tersebut adalah $p=4$ dan $q=-2$. Dengan demikian, nilai dari $\boxed{\begin{aligned} 5p-2q^2 & =54-2-2^2 \\ & =20-8=12 \end{aligned}}$ Jawaban B [collapse] Soal Nomor 11 Jika $x$ dan $y$ adalah akar dari sistem persamaan $x^2-2y^2=-2$ dan $3x^2+y^2=57$, maka nilai $2x^2-3y^2=\cdots \cdot$ A. $-30$ C. $5$ B. $-5$ D. $30$ Pembahasan Sistem persamaan di atas memang bukan termasuk SPLDV, tetapi dapat dibuat sebagai SPLDV dengan memisalkan $x^2 = a$ dan $y^2 = b$ sehingga diperoleh $\begin{cases} a-2b &= -2 && \cdots 1 \\ 3a+b & = 57 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} a-2b & = -2 \\ 3a+b & = 57 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~a-2b & = -2 \\~6a+2b & = 114 \end{aligned} \\ & \rule{3 cm}{ + \\ & \! \begin{aligned} 7a & = 112 \\ a & = 16 \end{aligned} \end{aligned}$ Substitusi $a = 16$ pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} 3\color{red}{a}+b & = 57 \\ 316 + b & = 57 \\ b & = 9 \end{aligned}$ Untuk itu, nilai dari $\boxed{\begin{aligned} 2x^2-3y^2 & = 2a-3b \\ & = 216-39 \\ &= 32-27=5 \end{aligned}}$ Jawaban C [collapse] Soal Nomor 12 Diketahui $a$ dan $b$ memenuhi sistem persamaan berikut. $\begin{cases} \dfrac{7}{a+b}+\dfrac{6}{a-b} & = 3 \\ \dfrac{7}{a+b}-\dfrac{3}{a-b} & = 0 \end{cases}$ Nilai dari $a^2-b^2=\cdots \cdot$ A. $-29$ C. $21$ B. $-21$ D. $29$ Pembahasan Misalkan $x = \dfrac{1}{a+b}$ dan $y = \dfrac{1}{a-b}$ sehingga kita peroleh SPLDV $\begin{cases} 7x+6y & = 3 && \cdots 1 \\ 7x-3y & = 0 && \cdots 2 \end{cases}$ Kita akan mencari nilai dari $a^2-b^2=a+ba-b = \dfrac{1}{xy}$, yang mengharuskan kita untuk mencari masing-masing nilai $x$ dan $y$ terlebih dahulu. Dari SPLDV di atas, kita dapat langsung mengeliminasi $x$ dengan mengurangkan kedua persamaan. $\begin{aligned} 7x+6y-7x-3y & = 3-0 \\ 9y & = 3 \\ y & = \dfrac13 \end{aligned}$ Substitusi $y = \dfrac13$ pada salah satu persamaan, misalnya pada persamaan $2$. $\begin{aligned} 7x-3\color{red}{y} & = 0 \\ 7x-3\left\dfrac13\right & = 0 \\ 7x-1 & = 0 \\ x & = \dfrac17 \end{aligned}$ Dengan demikian, kita akan peroleh $\dfrac{1}{xy} = \dfrac{1}{\frac17 \cdot \frac13} = 21$. Jadi, nilai dari $\boxed{a^2-b^2=21}$ Jawaban C [collapse] Soal Nomor 13 Perhatikan grafik berikut. Titik $1, 2$ merupakan titik potong dua garis. Dengan kata lain, titik tersebut akan menjadi penyelesaian dari sistem persamaan $\cdots \cdot$ A. $x+2y=-3$ dan $2x-y=-4$ B. $x-2y=-3$ dan $2x-y=-4$ C. $x+2y=-3$ dan $2x+y=4$ D. $x-2y=-3$ dan $2x+y=4$ Pembahasan Kita akan menentukan dua persamaan garis yang ada pada gambar di atas. Garis pertama melalui titik $2, 0$ dan $0, 4$. Karena kita tahu koordinat titik potong terhadap sumbu koordinat, maka kita akan lebih mudah menentukan persamaan garisnya. Persamaan garis pertama adalah $2x + y = 4$. Garis kedua melalui titik $-3, 0$ dan $1, 2$. Untuk mencari persamaan garisnya, bisa menggunakan cara kece berikut. Persamaan garis kedua adalah $x-2y=-3.$ Jadi, titik $1, 2$ merupakan penyelesaian sistem persamaan $x-2y=-3$ dan $2x+y=4$. Jawaban D [collapse] Baca Soal dan Pembahasan – Gradien dan Persamaan Garis Lurus Soal Nomor 14 Jumlah dua bilangan cacah adalah $27$ dan selisih kedua bilangan itu adalah $3$. Hasil kali kedua bilangan itu adalah $\cdots \cdot$ A. $81$ C. $180$ B. $176$ D. $182$ Pembahasan Misalkan bilangan cacah itu adalah $a$ dan $b$, dengan $a > b$ sehingga diperoleh SPLDV $\begin{cases} a+b & = 27 && \cdots 1 \\ a-b & = 3 && \cdots 2 \end{cases}$ Jumlahkan keduanya dan kita peroleh $2a = 30$, berarti $a = 15$, dan $b = 12$. Hasil kali $a$ dan $b$ adalah $ab = 1512 = 180$. Jadi, hasil kali dua bilangan tersebut adalah $\boxed{180}$ Jawaban C [collapse] Baca Juga Materi, Soal, dan Pembahasan – Sistem Persamaan Linear dan Kuadrat Soal Nomor 15 Harga $5$ pensil dan $2$ buku adalah sedangkan harga $3$ pensil dan $4$ buku Jika harga $1$ pensil dinyatakan dengan $a$ dan harga $1$ buku dinyatakan dengan $b$, maka sistem persamaan linear dua variabel yang tepat sesuai masalah di atas adalah $\cdots \cdot$ $5a+2b= dan $4a+3b= $5a+2b= dan $3a+4b= $2a+5b= dan $3a+4b= $2a+5b= dan $4a+3b= Pembahasan Harga $5$ pensil dan $2$ buku adalah kita tulis $5a + 2b = Harga $3$ pensil dan $4$ buku adalah kita tulis $3a + 4b = Jadi, SPLDV yang sesuai adalah $\begin{cases} 5a+2b= \\ 3a+4b= \end{cases}$ Jawaban B [collapse] Soal Nomor 16 Andi membeli $2$ buku tulis dan $3$ pensil seharga sedangkan Didit membeli $3$ buku tulis dan $2$ pensil seharga Jika Anita membeli $1$ buku dan $1$ pensil, maka ia harus membayar sebesar $\cdots \cdot$ A. C. B. D. Pembahasan Misalkan $x$ = harga $1$ buku tulis dan $y$ = harga $1$ pensil sehingga dapat dibentuk model matematika berupa SPLDV sebagai berikut. $\begin{cases} 2x + 3y & = && \cdots 1 \\ 3x + 2y & = && \cdots 2 \end{cases}$ Jumlahkan persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x+3y & = \\ 3x+2y & = \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 5x + 5y& = \\ x + y & = \end{aligned} \end{aligned}$ Dengan demikian, Anita harus membayar untuk membeli $1$ buku tulis dan $1$ pensil. Jawaban D [collapse] Soal Nomor 17 Umur Amar $\dfrac23$ kali umur Bondan. Enam tahun mendatang, jumlah umur mereka $42$ tahun. Selisih umur Amar dan Bondan adalah $\cdots \cdot$ A. $2$ tahun C. $4$ tahun B. $3$ tahun D. $6$ tahun Pembahasan Misalkan umur Amar = $A$ dan umur Bondan = $B$. Kita peroleh SPLDV berikut. $$\begin{cases} A & = \dfrac23B && \cdots 1 \\ A+6+B+6 & = 42 && \cdots 2 \end{cases}$$Substitusi persamaan $1$ pada persamaan $2$. $\begin{aligned} \color{red}{A}+6+B+6 & = 42 \\ \dfrac23B+6+B+6 & = 42 \\ \dfrac53B & = 30 \\ B & = 30 \times \dfrac35 = 18 \end{aligned}$ Umur Bondan saat ini $18$ tahun, berarti umur Amar sekarang adalah $\dfrac2318 = 12$ tahun. Selisih umur mereka berdua adalah $\boxed{18-12=6~\text{tahun}}$ Jawaban D [collapse] Soal Nomor 18 Harga $5$ kg gula pasir dan $30$ kg beras adalah sedangkan harga $2$ kg gula pasir dan $60$ kg beras adalah Harga $2$ kg gula pasir dan $5$ kg beras adalah $\cdots \cdot$ A. B. C. D. Pembahasan Misalkan $x$ = harga gula pasir per kg dan $y$ = harga beras per kg sehingga dapat dibentuk model matematika berupa SPLDV sebagai berikut. $\begin{cases} 5x + 30y & = && \cdots 1 \\ 2x + 60y & = && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 5x+30y & = \\ 2x+60y & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned} 10x+60y & = \\ 2x+60y & = \end{aligned} \\ & \rule{4 cm}{ – \\ & \! \begin{aligned} 8x & = \\ x & = \end{aligned} \end{aligned}$$Substitusi $x = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 5\color{red}{x} +30y & = \\ 5 + 30y & = \\ + 30y & = \\ 30y & = \\ y & = \end{aligned}$ Jadi, harga $1$ kg gula pasir adalah dan harga $1$ kg beras adalah Dengan demikian, harga $2$ kg gula pasir dan $5$ kg beras adalah $2 \times + 5 \times =$ $\boxed{\text{Rp} Jawaban B [collapse] Soal Nomor 19 Harga $2$ kg gula pasir dan $3$ kg beras adalah sedangkan harga $3$ kg gula pasir dan $3$ kg beras adalah Harga $1$ kg gula pasir dan $1$ kg beras masing-masing adalah $\cdots \cdot$ A. dan B. dan C. dan D. dan Pembahasan Misalkan $x$ = harga gula pasir per kg dan $y$ = harga beras per kg sehingga dapat dibentuk model matematika berupa SPLDV sebagai berikut. $\begin{cases} 2x + 3y & = && \cdots 1 \\ 3x + 3y & = && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2x+3y & = \\ 3x+3y & = \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} -x & = \\ x & = \end{aligned} \end{aligned}$ Substitusi $x = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 2\color{red}{x} +3y & = \\ 2 + 3y & = \\ + 3y & = \\ 3y & = \\ y & = \end{aligned}$ Jadi, harga $1$ kg gula pasir adalah dan harga $1$ kg beras adalah Jawaban A [collapse] Soal Nomor 20 Keliling lapangan yang berbentuk persegi panjang adalah $58$ meter. Jika selisih panjang dan lebarnya $9$ meter, maka luas lapangan tersebut adalah $\cdots~\text{m}^2$. A. $95$ C. $261$ B. $190$ D. $380$ Pembahasan Diketahui keliling persegi panjang 58 meter, berarti ditulis $2p + l = 58 \Leftrightarrow p + l = 29.$ Diketahui juga bahwa selisih panjang dan lebar 9 meter, berarti ditulis $p -l = 9.$ Dengan demikian, diperoleh SPLDV $\begin{cases} p + l &= 29 && \cdots 1 \\ p -l & = 9 && \cdots 2 \end{cases}$ Eliminasi $l$ dari persamaan $1$ dan $2.$ $\begin{aligned} \! \begin{aligned} p + l & = 29 \\ p -l& = 9 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 2p & = 38 \\ p & = 19 \end{aligned} \end{aligned}$ Untuk $p=19$, diperoleh $19-l = 9$, yang berarti $l = 10$. Jadi, luasnya adalah $\boxed{L = pl = 1910 = 190~\text{m}^2}$ Jawaban B [collapse] Soal Nomor 21 Sukardi membeli kue untuk merayakan acara ulang tahun pacarnya. Kue yang dibeli ada $2$ jenis, yaitu kue nastar dan kue keju. Harga $1$ kaleng kue nastar sama dengan dua kali harga $1$ kaleng kue keju. Jika harga $3$ kaleng kue nastar dan $2$ kaleng kue keju adalah maka uang yang harus dibayar Sukardi apabila ia memutuskan untuk membeli $2$ kaleng kue nastar dan $3$ kaleng kue keju adalah $\cdots \cdot$ A. B. C. D. Pembahasan Misalkan $x =$ harga satu kaleng kue nastar dan $y =$ harga satu kaleng kue keju. Dengan demikian, diperoleh SPLDV $\begin{cases} x & = 2y \\ 3x + 2y & = \end{cases}$ Substitusi $2y = x$ pada persamaan $2$ sehingga ditulis $\begin{aligned} 3x + \color{red}{x} & = \\ 4x & = \\ x & = \end{aligned}$ Ini berarti, $y = \dfrac{1}{2} \cdot = Harga $2$ kaleng kue nastar dan $3$ kaleng kue keju adalah $\begin{aligned} 2x + 3y & = 2 + 3 \\ & = + \\ & = \end{aligned}$ Jadi, uang yang harus dibayar Sukardi adalah Jawaban B [collapse] Soal Nomor 22 Budi dan Joko membeli buku tulis dan pulpen di toko Pak Umar. Budi membeli $10$ buku tulis dan $4$ pulpen dengan harga Joko membeli $5$ buku tulis dan $8$ pulpen dengan harga Harga $1$ buku tulis dan $1$ pulpen masing-masing adalah $\cdots \cdot$ A. dan B. dan C. dan D. dan Pembahasan Misalkan $x, y$ berturut-turut menyatakan harga $1$ buku tulis dan $1$ pulpen sehingga terbentuk SPLDV $\begin{cases} 10x + 4y & = && \cdots 1 \\ 5x + 8y & = && \cdots 2 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 10x + 4y & = \\ 5x + 8y & = \end{aligned} \left \! \begin{aligned} \div 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~5x+2y & = \\~5x+8y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 6y & = \\ y & = \end{aligned} \end{aligned}$$Substitusi $y = pada salah satu persamaan, misalkan pada persamaan pertama. $\begin{aligned} 5x + 2\color{red}{y} & = \\ 5x + 2 & = \\ 5x + & = \\ 5x & = \\ x & = \end{aligned}$ Jadi, harga $1$ buku tulis dan $1$ pulpen berturut-turut adalah dan Jawaban D [collapse] Soal Nomor 23 Perhatikan gambar berikut. Gambar a dan b masing-masing menunjukkan potongan struk belanjaan Lucky dan Claresta di Indoapril Alun-alun Pacitan. Jika pada hari yang sama, Audrey memiliki uang dan ingin membeli buku tulis 10’s dan pensil 2B dengan kuantitas terbanyak, maka barang yang dapat dibeli olehnya adalah $\cdots \cdot$ empat buku tulis 10’s dan enam pensil 2B enam buku tulis 10’s dan empat pensil 2B sepuluh buku tulis 10’s dan enam pensil 2B enam buku tulis 10’s dan delapan pensil 2B Pembahasan Misalkan $x, y$ berturut-turut menyatakan harga 1 buku tulis 10’s dan 1 pensil sehingga terbentuk SPLDV $\begin{cases} 2x + 3y & = && \cdots 1 \\ x + y & = && \cdots 2 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 2x + 3y & = \\ x + y & = \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2x + 3y & = \\~2x + 2y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} y & = \end{aligned} \end{aligned}$$Substitusi $y = pada salah satu persamaan, misalkan pada persamaan $2$. $\begin{aligned} x + \color{red}{y} & = \\ x + & = \\ x & = \end{aligned}$ Ini berarti, harga $1$ buku tulis 10’s dan $1$ pensil berturut-turut adalah dan Cek alternatif jawaban empat buku tulis 10’s dan enam pensil 2B $\begin{aligned} 4x + 6y & = 4 + 6 \\ & = \end{aligned}$ enam buku tulis 10’s dan empat pensil 2B $\begin{aligned} 6x + 4y & = 6 + 4 \\ & = \end{aligned}$ kelebihan sepuluh buku tulis 10’s dan enam pensil 2B $\begin{aligned} 10x + 6y & = 10 + 6 \\ & = \end{aligned}$ kelebihan enam buku tulis 10’s dan delapan pensil 2B $\begin{aligned} 6x + 8y & = 6 + 8 \\ & = \end{aligned}$ kelebihan Jawaban A [collapse] Soal Nomor 24 Claresta dan Lucky membeli buku tulis dan pulpen di toko yang sama dengan bukti pembayaran sebagai berikut. Jika Roy membeli $5$ buku tulis dan $7$ pulpen yang berjenis sama di Toko Alang-Alang “Asyiapp Hore-Hore”, maka ia harus membayar sebesar $\cdots \cdot$ A. C. B. D. Pembahasan Misalkan $x, y$ berturut-turut menyatakan harga $1$ buku tulis dan $1$ pulpen sehingga terbentuk SPLDV $\begin{cases} 3x + 5y & = && \cdots 1 \\ 4x + 2y & = && \cdots 2 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 3x + 5y & = \\ 4x + 2y & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 5 \end{aligned} \right & \! \begin{aligned} 6x + 10y & = \\~20x + 10y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 14x & = \\ x & = \end{aligned} \end{aligned}$$Substitusi $x = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} 3\color{red}{x} + 5y & = \\ 3 + 5y & = \\ + 5y & = \\ 5y & = \\ y & = \end{aligned}$ Ini berarti, harga $1$ buku tulis dan $1$ pulpen berturut-turut adalah dan Karena Roy membeli $5$ buku tulis dan $7$ pulpen, maka $\begin{aligned} 5x + 7y & = 5 + 7 \\ & = + = \end{aligned}$ Jadi, uang yang harus dibayar Roy sebesar Jawaban A [collapse] Soal Nomor 25 Selisih uang adik dan kakak Dua kali uang kakak ditambah uang adik hasilnya Jumlah uang mereka berdua adalah $\cdots \cdot$ A. C. B. D. Pembahasan Misalkan banyaknya uang adik disimbolkan $x$ dan banyaknya uang kakak disimbolkan $y$ sehingga diperoleh SPLDV $\begin{cases} x -y & = && \cdots 1 \\ x + 2y & = && \cdots 2 \end{cases}$ Dengan menggunakan metode gabungan, diperoleh $\begin{aligned} \! \begin{aligned} x + 2y & = \\ x -y & = \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} 3y & = \\ y & = \end{aligned} \end{aligned}$ Untuk $y= diperoleh $x = + yang berarti $x = Jumlah uang mereka berdua kita tulis $\boxed{x+y= Jadi, jumlah uang mereka berdua adalah Jawaban B [collapse] Soal Nomor 26 Banyaknya penyelesaian solusi dari sistem persamaan linear $\begin{cases} 6x+2y & =12 \\ 3x+y & =6 \end{cases}$ adalah $\cdots \cdot$ A. $0$ C. $2$ B. $1$ D. $\infty$ tak hingga Pembahasan Perhatikan bahwa $\begin{aligned} \! \begin{aligned} 6x+2y & = 12 \\ 3x+y & = 6 \end{aligned} \left \! \begin{aligned} \times \frac12 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~3x+y & = 6 \\ 3x+y & = 6 \end{aligned} \end{aligned}$ Sistem tersebut memiliki dua persamaan yang sebenarnya ekuivalen sama. Ini berarti, sistem tersebut mengandung dua variabel dalam persamaan tunggal sehingga ada $\infty$ tak hingga banyaknya penyelesaian. Jawaban D [collapse] Soal Nomor 27 Jika sistem persamaan linear $\begin{cases} ax-by & =6 \\ 2ax + 3by & =2 \end{cases}$ mempunyai penyelesaian $x = 2$ dan $y=1$, maka nilai dari $a^2+b^2 = \cdots \cdot$ A. $2$ C. $5$ B. $4$ D. $8$ Pembahasan Karena $x=2$ dan $y=1$ merupakan penyelesaian dari SPLDV di atas, maka substitusi menghasilkan $\begin{cases} 2a-b = 6 \\ 4a+3b=2 \end{cases}$ Akan ditentukan nilai $b$ dengan menggunakan metode eliminasi. $\begin{aligned} \! \begin{aligned} 2a-b & = 6 \\ 4a+3b & = 2 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~4a-2b & = 12 \\ 4a+3b & = 2 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -5b & = 10 \\ b & = -2 \end{aligned} \end{aligned}$ Substitusi $b=-2$ pada salah satu persamaan, misalnya pada persamaan $2a-b=6$ sehingga diperoleh $2a-2=6 \Leftrightarrow 2a=4 \Leftrightarrow a = 2$ Dengan demikian, nilai dari $\boxed{a^2+b^2=2^2+-2^2=4+4=8}$ Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Soal Cerita Aplikasi SPLTV Tingkat Lanjut Soal Nomor 28 Semua siswa di suatu kelas pada sekolah ABC akan menggunakan komputer. Jika setiap komputer digunakan oleh 2 siswa, maka akan ada 3 siswa yang tidak menggunakan komputer, sedangkan jika setiap komputer digunakan oleh 3 siswa, maka akan ada 4 komputer yang tidak digunakan. Banyak komputer yang dimiliki sekolah itu adalah $\cdots$ unit. A. $11$ C. $15$ E. $35$ B. $13$ D. $33$ Pembahasan Misalkan $\begin{aligned} x & = \text{banyak siswa} \\ y & = \text{banyak komputer} \end{aligned}$ Berdasarkan kalimat kedua soal, kita dapat membentuk model matematika berupa SPLDV. $\begin{cases} x & = 2y + 3 && \cdots 1 \\ x & = 3y -4 = 3y -12 && \cdots 2\end{cases}$ Substitusi nilai $x$ dari salah satu persamaan ke persamaan yang lain sehingga diperoleh $\begin{aligned} 2y + 3 & = 3y-12 \\ 3y-2y & = 12+3 \\ y & = 15 \end{aligned}$ Jadi, banyak komputer di sekolah ABC adalah $\boxed{15~\text{unit}}$ Jawaban C [collapse] Soal Nomor 29 Suatu sekolah memiliki gedung asrama yang terdiri dari beberapa kamar. Jika setiap kamar diisi oleh dua siswa, maka akan ada $12$ siswa yang tidak menempati kamar. Jika setiap kamar diisi oleh tiga siswa, maka akan ada $2$ kamar yang kosong. Berapa banyak kamar yang tersedia di asrama sekolah itu? A. $16$ C. $20$ E. $24$ B. $18$ D. $22$ Pembahasan Misalkan $S, K$ masing-masing mewakili banyak siswa dan banyak kamar yang ada di asrama. Berdasarkan informasi yang diberikan, diperoleh SPLDV berikut. $$\begin{cases} S & = 2K + 12 && \cdots 1 \\ S & = 3K-2 = 3K-6 && \cdots 2 \end{cases}$$Substitusi nilai $S$ dari salah satu persamaan ke persamaan yang lain sehingga diperoleh $\begin{aligned} 2K+12 & = 3K-6 \\ 3K-2K & = 6+12 \\ K & = 18 \end{aligned}$ Jadi, ada $\boxed{18}$ kamar di asrama sekolah tersebut. Jawaban B [collapse] Soal Nomor 30 Sebuah sekolah mempunyai beberapa ruang kelas. Jika jumlah kursi dalam setiap kelas adalah $36$ buah, maka akan tersisa $96$ kursi. Namun, jika jumlah kursi di setiap kelas ditambah sebanyak $6$ buah, maka akan kekurangan $48$ kursi. Berapa jumlah ruang kelas dalam sekolah tersebut? A. $30$ C. $20$ E. $12$ B. $24$ D. $15$ Pembahasan Misalkan $x, y$ masing-masing mewakili banyak kursi dan banyak ruang kelas. Dari informasi yang diberikan, kita dapat membuat model matematika berupa SPLDV berikut. $\begin{cases} x & = 36y + 96 && \cdots 1 \\ x & = 42y-48 && \cdots 2 \end{cases}$ Kurangi kedua persamaan tersebut dan diperoleh $\begin{aligned} 6y-144 & = 0 \\ 6y & = 144 \\ y & = \dfrac{144}{6} = 24 \end{aligned}$ Jadi, banyak ruang kelas di sekolah tersebut adalah $\boxed{24}$ Jawaban B [collapse] Soal Nomor 31 Pada rangkaian listrik tertutup, dengan menerapkan Hukum Kirchhoff diperoleh sistem persamaan $\begin{cases} 2R_1+3R_2 & = 8 \\ R_1-3R_2& = 1 \end{cases}$ Nilai dari $R_1$ dan $R_2$ dalam satuan $\Omega$ baca ohm berturut-turut adalah $\cdots \cdot$ A. $3$ dan $\dfrac13$ D. $\dfrac13$ dan $2$ B. $3$ dan $\dfrac23$ E. $3$ dan $1$ C. $\dfrac23$ dan $2$ Pembahasan Diketahui SPLDV $\begin{cases} 2R_1+3R_2 & = 8 && \cdots 1 \\ R_1-3R_2& = 1 && \cdots 2 \end{cases}$ Eliminasi $R_2$ dari kedua persamaan di atas. $\begin{aligned} \! \begin{aligned} 2R_1+3R_2 & = 8 \\ R_1-3R_2 & = 1 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 3R_1 & = 9 \\ R_1 & = 3 \end{aligned} \end{aligned}$ Substitusi $R_1 = 3~\Omega$ pada persamaan $2$. $\begin{aligned} \color{red}{R_1}-3R_2 & = 1 \\ 3-3R_2 & = 1 \\ -3R_2 & = -2 \\ R_2 & = \dfrac23 \end{aligned}$ Jadi, nilai dari $R_1$ dan $R_2$ berturut-turut adalah $3~\Omega$ dan $\dfrac23 ~\Omega$. Jawaban B [collapse] Soal Nomor 32 Jika sistem persamaan $\begin{cases} mx+3y & = 21 \\ 4x-3y & = 0 \end{cases}$ memiliki penyelesaian bilangan bulat positif $x$ dan $y$, maka nilai $m+x+y$ yang mungkin adalah $\cdots \cdot$ A. $9$ atau $45$ D. $12$ atau $46$ B. $10$ atau $45$ E. $15$ atau $52$ C. $10$ atau $46$ Pembahasan Diketahui $\begin{cases} mx+3y & = 21 && \cdots 1 \\ 4x-3y & = 0 && \cdots 2 \end{cases}$ Pada persamaan $2$, diperoleh $-3y = -4x \Leftrightarrow y = \dfrac43x.$ Agar $y$ bulat, maka $x$ harus habis dibagi $3$. Substitusi $y = \dfrac43x$ pada persamaan $1$. $\begin{aligned} mx+3\color{red}{y} & = 21 \\ mx + \cancel{3}\left\dfrac{4}{\cancel{3}}x\right & = 21 \\ mx + 4x & = 21 \\ m+4x & = 21 \end{aligned}$ Bentuk $m+4x$ dapat dianggap sebagai perkalian dua bilangan bulat yang menghasilkan $21$. Faktor dari $21$ adalah $1, 3, 7$, dan $21$ hanya $3$ dan $21$ yang mungkin untuk menjadi nilai $x$ karena keduanya habis dibagi $3$. Misal diambil $x = 3$. Akibatnya, $m = 3$ dan $y = 4$ sehingga $\boxed{m+x+y = 3+3+4 = 10}$ Misal diambil $x = 21$. Akibatnya, $m = -3$ dan $y = 28$ sehingga $\boxed{m+x+y = -3+21+28 = 46}$ Jadi, nilai $m+x+y$ yang mungkin adalah $10$ atau $46.$ Jawaban C [collapse] Soal Nomor 33 Jika solusi dari SPLDV $\begin{cases} a+3x + y & = 0 \\ x + a+3y & = 0 \end{cases}$ tidak hanya $x, y = 0,0,$ maka nilai $a^2+6a+17 = \cdots \cdot$ A. $0$ C. $4$ E. $16$ B. $1$ D. $9$ Pembahasan Diketahui $\begin{cases} a+3x + y & = 0 && \cdots 1 \\ x + a+3y & = 0 && \cdots 2 \end{cases}$ Dua ruas pada persamaan $2$ dikali dengan $a+3$ menghasilkan $a+3x + a+3^2y = 0~~~~~\cdots 3$. Kurangi $1$ dan $3$, lalu selesaikan untuk mencari nilai $a$. $\begin{aligned} y-a+3^2y & = 0 \\ y1-a+3^2 & = 0 \\ 1-a+3^2 & = 0 && \text{Bagi}~y \\ 1-a^2+6a+9 & = 0 \\ a^2+6a+8 & = 0 \\ a+4a+2 & = 0 \end{aligned}$ Diperoleh nilai $a=-4$ atau $a=-2$. Substitusi $a=-4$ dan $a=-2$ pada bentuk $a^2+6a+17$. $$\begin{aligned} a = -4 & \Rightarrow -4^2 + 6-4 + 17 = 9 \\ a = -2 & \Rightarrow -2^2 + 6-2 + 17 = 9 \end{aligned}$$Jadi, nilai dari $\boxed{a^2+6a+17 = 9}$ Jawaban D [collapse] Soal Nomor 34 Pak Dede bekerja selama $6$ hari dengan $4$ hari di antaranya lembur dan ia mendapat upah Pak Asep bekerja selama $5$ hari dengan $2$ hari di antaranya lembur dan ia mendapat upah Pak Dian bekerja $4$ hari dan seluruhnya lembur. Mereka bertiga mendapat sistem upah yang sama. Upah yang diperoleh Pak Dian adalah $\cdots \cdot$ A. B. C. D. E. Pembahasan Misalkan $L, N$ berturut-turut menyatakan upah saat hari lembur dan upah saat hari normal. Pak Dede bekerja selama $6$ hari dengan $4$ hari di antaranya lembur $2$ hari sisanya normal dan ia mendapat upah Secara matematis, ditulis $\boxed{4L + 2N = Pak Asep bekerja selama $5$ hari dengan $2$ hari di antaranya lembur $3$ hari sisanya normal dan ia mendapat upah Secara matematis, ditulis $\boxed{2L + 3N = Dengan demikian, diperoleh SPLDV $\begin{cases} 4L + 2N & = && \cdots 1 \\ 2L+3N & = && \cdots 2 \end{cases}$ Persamaan $1$ dapat disederhanakan menjadi $2L + N = Akan dicari nilai dari $L$ dengan mengeliminasi $N$. $$\begin{aligned} \! \begin{aligned} 2L + N & = \\ 2L+3N & = \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~6L + 3N & = \\~2L + 3N & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 4L & = \\ L & = \end{aligned} \end{aligned}$$Jadi, upah untuk satu hari lembur adalah Diketahui bahwa Pak Dian bekerja selama $4$ hari dan seluruhnya lembur. Upah yang diterimanya adalah $\boxed{4L = 4 = \text{Rp} Jawaban C [collapse] Soal Nomor 35 Suatu larutan mempunyai kadar asam $25\%$ dan larutan lainnya mengandung $65\%$ asam. Berapa liter larutan masing-masing yang dibutuhkan agar diperoleh $8$ liter larutan baru dengan kadar asam $40\%$? Larutan pertama $5$ liter dan larutan kedua $3$ liter Larutan pertama $3$ liter dan larutan kedua $5$ liter Larutan pertama $3$ liter dan larutan kedua $3$ liter Larutan pertama $5$ liter dan larutan kedua $5$ liter Larutan pertama $7$ liter dan larutan kedua $3$ liter Pembahasan Misalkan larutan pertama dibutuhkan sebanyak $A$ liter dan larutan kedua dibutuhkan sebanyak $B$ liter. Jumlah larutan secara keseluruhan adalah $8$ liter. Secara matematis, ditulis $\boxed{A+B = 8}$ Larutan pertama mempunyai kadar asam $25\%$ dan larutan kedua mengandung $65\%$ asam. Campuran keduanya menghasilkan $8$ liter larutan baru dengan kadar asam $40\%$. Secara matematis, ditulis $25\%A + 65\%B = 40\% \cdot 8.$ Sederhanakan menjadi $\boxed{5A + 13B = 64}$ Dengan demikian, diperoleh SPLDV $\begin{cases} A+B & = 8 && \cdots 1 \\ 5A +13B & = 64 && \cdots 2 \end{cases}$ Persamaan $1$ ekuivalen dengan $A=8-B$. Substitusi $A=8-B$ pada persamaan $2$. $\begin{aligned} 5\color{red}{A} +13B &= 64 \\ \Rightarrow 58-B+13B & = 64 \\ 40-5B+13B & = 64 \\ 8B & = 24 \\ B & = 3 \end{aligned}$ Substitusi $B = 3$ pada persamaan $1.$ $\begin{aligned} A+\color{red}{B} & =8 \\ A+3 & = 8 \\ A & = 5 \end{aligned}$ Jadi, dibutuhkan larutan pertama sebanyak $5$ liter dan larutan kedua sebanyak $3$ liter. Jawaban A [collapse] Soal Nomor 36 Elvand memerlukan waktu $2$ jam untuk mendayung $9$ km dengan mengikuti arus dan $6$ jam jika melawan arus. Kecepatan Elvand mendayung air dalam kondisi normal adalah $\cdots \cdot$ A. $1$ km/jam D. $3$ km/jam B. $1,5$ km/jam E. $4,5$ km/jam C. $2$ km/jam Pembahasan Misalkan $A, B$ berturut-turut menyatakan kecepatan Elvand saat mendayung dan kecepatan arus sungai dalam satuan km/jam. Dengan demikian, dapat dibuat SPLDV $\begin{cases} 2A+2B & = 9 && \cdots 1 \\ 6A-6B & = 9 && \cdots 2 \end{cases}$ Persamaan $2$ dapat disederhanakan menjadi $2A-2B = 3$. Eliminasi $A$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 2A+2B & = 9 \\ 2A-2B & = 3 \end{aligned} \\ \rule{3 cm}{ + \\ \! \begin{aligned} 4A & = 12 \\ A & = 3 \end{aligned} \end{aligned}$ Jadi, kecepatan Elvand mendayung adalah $3$ km/jam. Jawaban D [collapse] Soal Nomor 37 Sistem persamaan linear $\begin{cases} p+1x+3p-2y & = p \\ 3p-1x + 4p+2y & = 2p \end{cases}$ memiliki solusi yang tak berhingga banyaknya untuk nilai $p = \cdots \cdot$ A. $-1$ atau $0$ D. $0$ atau $3$ B. $0$ atau $1$ E. $-1$ atau $-3$ C. $1$ atau $3$ Pembahasan SPLDV $\begin{cases} a_1x + b_1y & = c_1 \\ a_2x+b_2y & = c_2 \end{cases}$ memiliki tak hingga banyaknya penyelesaian, apabila $\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}.$ Pemenuhan Persamaan Pertama $\begin{aligned} \dfrac{a_1}{a_2} & = \dfrac{b_1}{b_2} \\ \dfrac{p+1}{3p-1} & = \dfrac{3p-2}{4p+2} \\ p+14p+2 & = 3p-13p-2 \\ 4p^2+6p+2 & = 9p^2-9p+2 \\ 5p^2-15p & = 0 \\ 5pp-3 & = 0 \\ p = 0 &~\text{atau}~p=3 \end{aligned}$ Pemenuhan Persamaan Kedua $\begin{aligned} \dfrac{a_1}{a_2} & = \dfrac{c_1}{c_2} \\ \dfrac{p+1}{3p-1} & = \dfrac{\cancel{p}}{2\cancel{p}} \\ p+12 & = 3p-1 \\ 2p+2 & = 3p-1 \\ p & = 3 \end{aligned}$ Jelas bahwa $p=3$ akan mengakibatkan SPLDV di atas memiliki tak hingga banyaknya penyelesaian. Sekarang, uji $p = 0$. $\begin{cases} 0+1x+30-2y & = 0 \\ 30-1x + 40+2y & = 20 \end{cases}$ Sederhanakan menjadi $\begin{cases} x-2y & = 0 && 1 \\ -x+2y & = 0 && 2 \end{cases}$ Tampak bahwa persamaan $1$ dan $2$ ekuivalen sehingga akan ada tak hingga banyaknya penyelesaian untuknya. Jadi, nilai $p$ yang memenuhi adalah $p=0$ atau $p=3$. Jawaban D [collapse] Soal Nomor 38 Agar sistem persamaan $\begin{cases} 3x+2y & = 12 \\ 2x-y & = 1 \\ kx + 2y & = 16 \end{cases}$ mempunyai penyelesaian, maka nilai $k$ adalah $\cdots \cdot$ A. $-5$ C. $-1$ E. $5$ B. $-3$ D. $3$ Pembahasan Diberikan sistem persamaan linear $\begin{cases} 3x+2y & = 12 && \cdots 1 \\ 2x-y & = 1 && \cdots 2 \\ kx + 2y & = 16 && \cdots 3 \end{cases}$ Selesaikan persamaan $1$ dan $2$, artinya mencari nilai $x, y$ yang memenuhi kedua persamaan tersebut. $\begin{aligned} \! \begin{aligned} 3x+2y & = 12 \\ 2x-y & = 1 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~3x+2y & = 12 \\~4x-2y & = 2 \end{aligned} \\ & \rule{3 cm}{ + \\ & \! \begin{aligned} 7x & = 14\\ x & = 2 \end{aligned} \end{aligned}$ Untuk $x = 2$, kita substitusikan pada persamaan $2$ untuk memperoleh $\begin{aligned} 2\color{red}{2}-y & = 1 \\ 4-y & = 1 \\ y & = 3 \end{aligned}$ Kita peroleh $x, y = 2, 3$ merupakan penyelesaian untuk persamaan $1$ dan $2$, artinya agar sistem persamaan tersebut memiliki penyelesaian, maka persamaan $3$ juga harus memiliki penyelesaian serupa, yakni $2, 3$. $\begin{aligned} kx+2y & = 16 \\ \Rightarrow k2 + 23 & = 16 \\ 2k + 6 & = 16 \\ 2k & = 10 \\ k & = 5 \end{aligned}$ Jadi, nilai $k$ sama dengan $\boxed{5}$ Jawaban E [collapse] Soal Nomor 39 Diketahui sistem persamaan di bawah ini mempunyai tak terhingga banyaknya solusi $x, y$. $$\begin{cases} kx + y & = 1 \\ 4x + ky & = 2 \end{cases}$$Banyaknya nilai $k$ yang mungkin adalah $\cdots \cdot$ A. $0$ tidak ada B. $1$ C. $2$ D. $3$ E. $4$ Pembahasan Diketahui $$\begin{cases} kx + y & = 1 && \cdots 1 \\ 4x + ky & = 2 && \cdots 2 \end{cases}$$Pertama, samakan dulu konstanta di ruas kanan. Kalikan kedua ruas pada persamaan $1$ dengan $2$ sehingga didapat $$\begin{cases} 2kx + 2y & = 2 && \cdots 1 \\ 4x + ky & = 2 && \cdots 2 \end{cases}$$Agar memiliki tak terhingga banyaknya solusi, maka koefisien $x$ dan $y$ perlu disamakan sehingga berlaku $$\begin{cases} 2k & = 4 \\ 2 & = k \end{cases}$$Jelas bahwa $k = 2$ memenuhi. Jadi, hanya ada $\boxed{1}$ nilai $k$ yang mungkin. Jawaban B [collapse] Baca Materi, Soal, dan Pembahasan – Aturan Cramer Bagian Uraian Soal Nomor 1 Tentukan penyelesaian dari sistem persamaan berikut. a. $\begin{cases} \dfrac13x-5+\dfrac34y+2 &=-2\dfrac12 \\ \dfrac122x+3-\dfrac232y+1 & = 8\dfrac16 \end{cases}$ b. $\begin{cases} \dfrac{2}{x}+\dfrac{1}{y} & = 1\dfrac15 \\ \dfrac{1}{x}-\dfrac{3}{y} & = -\dfrac{1}{10} \end{cases}$ Pembahasan Jawaban a Diketahui $$\begin{cases} \dfrac13x-5+\dfrac34y+2 &=-2\dfrac12&& \cdots 1 \\ \dfrac122x+3-\dfrac232y+1 & = 8\dfrac16 && \cdots 2 \end{cases}$$Sederhanakan persamaan $1$ terlebih dahulu dengan mengalikan kedua ruas dengan $12$. $$\begin{aligned} \dfrac13x-5+\dfrac34y+2 &=-2\dfrac12 && \times 12 \\ 4x-5+9y+2 & = -30 \\ 4x-20+9y+18 & = -30 \\ 4x+9y-2 & = -30 \\ 4x+9y & = -28 && \cdots 3 \end{aligned}$$Sederhanakan juga persamaan $2$ dengan mengalikan kedua ruas dengan $6$. $$\begin{aligned} \dfrac122x+3-\dfrac232y+1 & = 8\dfrac16 && \times 6 \\ 32x+3-42y+1 & = 49 \\ 6x+9-8y-4 & = 49 \\ 6x-8y+5 & = 49 \\ 6x-8y & = 44 \\ 3x-4y & = 22 && \cdots 4 \end{aligned}$$Sekarang, dengan menggunakan metode eliminasi, kita peroleh $$\begin{aligned} \! \begin{aligned} 4x+9y & = -28 \\ 3x-4y & = 22 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 4 \end{aligned} \right & \! \begin{aligned}~12x+27y & = -84 \\ 12x-16y & = 88 \end{aligned} \\ & \rule{ – \\ & \! \begin{aligned} 43y & = -172 \\ y & = -4 \end{aligned} \end{aligned}$$Substitusi $y = -4$ pada salah satu persamaan, misalkan pada persamaan $4$. $\begin{aligned} 3x-4\color{red}{y}& = 22 \\ 3x-4-4 & = 22 \\ 3x+16 & = 22 \\ 3x & = 6 \\ x & = 2 \end{aligned}$ Jadi, penyelesaian SPLDV tersebut adalah $\boxed{2, -4}$ Jawaban b Diketahui $\begin{cases} \dfrac{2}{x}+\dfrac{1}{y} & = 1\dfrac15 \\ \dfrac{1}{x}-\dfrac{3}{y} & = -\dfrac{1}{10} \end{cases}$ Misalkan $a = \dfrac{1}{x}$ dan $b = \dfrac{1}{y}$ sehingga kita peroleh SPLDV berikut. $\begin{aligned} 2a + b & = \dfrac65 && \cdots 1 \\ a-3b & = -\dfrac{1}{10} && \cdots 2 \end{aligned}$ Sekarang, dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} 2a+b & = \frac65 \\ a-3b & = -\frac{1}{10} \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2a+b & = \frac65 \\ 2a-6b & = -\frac15 \end{aligned} \\ & \rule{ – \\ & \! \begin{aligned} 7b & = \frac75 \\ b & = \frac15 \end{aligned} \end{aligned}$ Karena $b = \dfrac{1}{y}$, maka itu berarti $y = 5$. Substitusi $y = 5$ pada salah satu persamaan $\dfrac{2}{x}+\dfrac{1}{y} = \dfrac65$. $\begin{aligned} \dfrac{2}{x} + \dfrac{1}{5} & = \dfrac65 \\ \dfrac{2}{x} & = 1 \\ x & = 2 \end{aligned}$ Jadi, penyelesaian sistem persamaan tersebut adalah $\boxed{2, 5}$ [collapse] Soal Nomor 2 Setengah uang Ali ditambah uang Hadi adalah Diketahui juga $\dfrac23$ uang Ali dikurangi $\dfrac13$ uang Hadi sama dengan Buatlah sistem persamaan model matematika terkait masalah di atas dan selesaikan. Tentukan jumlah uang mereka berdua. Pembahasan Jawaban a Misalkan uang Ali = $A$ dan uang Hadi = $H$. Kita peroleh SPLDV berikut. $\begin{cases} \dfrac12A + H & = && \cdots 1 \\ \dfrac23A-\dfrac13H & = && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $$\begin{aligned} \! \begin{aligned} \frac12A+H & = \\ \frac23A-\frac13H & = \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~\frac12A+H & = \\ 2A-H & = \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} \dfrac52A & = \\ A & = \end{aligned} \end{aligned}$$Substitusi $A = pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} \dfrac12\color{red}{A} + H & = \\ \dfrac12 & = \\ & = \\ H & = \end{aligned}$ Jadi, penyelesaian SPLDV tersebut adalah $A = dan $H = Jawaban b Uang Ali dan uang Hadi masing-masing adalah dan sehingga jumlah uang mereka berdua adalah [collapse] Soal Nomor 3 Perhatikan gambar persegi panjang berikut. Tentukan nilai $x$ dan $y$ berdasarkan gambar di atas. Pembahasan Pada persegi panjang, kedua sisi yang berhadapan memiliki panjang yang sama sehingga kita peroleh SPLDV berikut. $\begin{cases} x + 3y & = 7 && \cdots 1 \\ 2x+y & = 9 && \cdots 2 \end{cases}$ Dengan menggunakan metode eliminasi, kita peroleh $\begin{aligned} \! \begin{aligned} x+3y & = 7 \\ 2x+y & = 9 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~2x+6y & = 14 \\ 2x+y & = 9 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 5y & = 5 \\ y & = 1 \end{aligned} \end{aligned}$ Substitusi $y = 1$ pada salah satu persamaan, misalkan pada persamaan $1$. $\begin{aligned} x+3\color{red}{y} & = 7 \\ x+31 & = 7 \\ x & = 4 \end{aligned}$ Jadi, nilai $x = 4$ dan $y = 1$. [collapse] Soal Nomor 4 Pak Guru akan membagikan sekantong permen kepada siswanya. Bila tiap siswa mendapat $2$ permen, maka akan tersisa $4$ permen, tetapi bila tiap siswa mendapat $3$ permen, maka akan ada $2$ siswa yang tidak mendapat permen sama sekali dan $1$ siswa lainnya hanya mendapat $2$ permen. Jika banyak permen adalah $p$ dan banyak siswa adalah $s$, maka tentukan sistem persamaan linear dari masalah di atas. Pembahasan Misalkan banyak permen = $p$ dan banyak siswa = $s$. Bila tiap siswa mendapat $2$ permen, maka akan tersisa $4$ permen, kita tuliskan $p = 2s + 4.$ Bila tiap siswa mendapat $3$ permen, maka akan ada $2$ siswa yang tidak mendapat permen sama sekali dan $1$ siswa lainnya hanya mendapat $2$ permen. Ini artinya, jumlah permennya sama dengan $3$ kali dari jumlah siswa, tetapi dikurangi dengan $6$ karena $2$ siswa tadi harusnya mendapat total $6$ permen, lalu dikurangi lagi dengan $1$ karena $1$ siswa lainnya kekurangan $1$ permen. Kita tulis, $p = 3s-6-1 = 3s-7$. Jadi, sistem persamaan linear dari masalah di atas adalah $\boxed{\begin{cases} p & = 2s + 4 \\ p & = 3s-7 \end{cases}}$ [collapse] Soal Nomor 5 Terdapat sebuah tabung kosong dengan berat $50$ gram. Material $X$ dengan banyaknya campuran logam $A$ dan logam $B$ berbanding $1 2$ dimasukkan ke dalam tabung sehingga beratnya menjadi $70$ gram. Jika material $Y$ yang mengandung campuran logam $A$ dan logam $B$ dengan perbandingan $2 1$ dimasukkan ke dalam tabung, maka beratnya menjadi $75$ gram. Berapakah berat total tabung jika material $Z$ yang memuat kandungan logam $A$ dan logam $B$ dengan perbandingan $1 1$ dimasukkan? Pembahasan Diketahui berat tabung = $50$ gram. Misalkan $A, B$ berturut-turut adalah berat logam $A$ dan berat logam $B$. Kondisi pertama Dimasukkan material $X$, sehingga berat tabung menjadi $70$ gram, artinya berat material $X$ sama dengan $70-50 = 20$ gram. Karena material $X$ terdiri dari campuran logam $A$ dan logam $B$ dengan perbandingan $1 2$, maka diperoleh persamaan $$2A + B = 20~~~~\cdots 1$$Kondisi kedua Dimasukkan material $Y$ sehingga berat tabung menjadi $75$ gram, artinya berat material $Y$ sama dengan $75-50 = 25$ gram. Karena material $Y$ terdiri dari campuran logam $A$ dan logam $B$ dengan perbandingan $2 1$, maka diperoleh persamaan $$A + 2B = 25~~~~\cdots 2$$Dari persamaan $1$ dan $2$, kita eliminasi variabel $B$. $$\begin{aligned} \! \begin{aligned} 2A+B & = 20 \\ A+2B & = 25 \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~4A + 2B & = 40 \\~A + 2B & = 25 \end{aligned} \\ & \rule{3 cm}{ – \\ & \! \begin{aligned} 3A & = 15 \\ A & = 5 \end{aligned} \end{aligned}$$Substitusi nilai $A = 5$ yang didapat pada persamaan $1$. $$\begin{aligned} 2\color{red}{A} + B & = 20 \\ 25 + B & = 20 \\ B & = 10 \end{aligned}$$Jadi, berat logam $A$ dan logam $B$ berturut-turut adalah $5$ gram dan $10$ gram. Berat material $Z$ yang mengandung logam $A$ dan logam $B$ dengan perbandingan $1 1$ adalah $5 + 10 = 15$ gram sehingga berat tabung menjadi $\boxed{50 + 15 = 65}$ gram. [collapse] Sistem persamaan linear adalah persamaan-persamaan linear yang dikorelasikan untuk membentuk suatu sistem. Sistem persamaannya bisa terdiri dari satu variabel, dua variabel atau lebih. Dalam bahasan ini, kita hanya membahas sistem persamaan linear dengan dua dan tiga variabel. Sistem Persamaan Linear Dua Variabel SPLDV Sistem persamaan linear dua variabel adalah sistem persamaan linear yang terdiri dari dua persamaan dimana masing-masing persamaan memiliki dua variabel. Contoh SPLDV dengan variabel dan dimana , dan adalah bilangan-bilangan real. Penyelesaian SPLDV Penyelesaian SPDV bertujuan untuk menentukan nilai yang memenuhi kedua persamaan yang ada pada SPLDV. Penyelesaian SPLDV terdapat beberapa cara, yaitu Metode grafik Pada metode grafik ini, langkah-langkah yang dilakukan pertama adalah menentukan grafik garis dari masing-masing persamaan kemudian menentukan titik potong dari kedua garis. Titik potong dari kedua garis tersebut adalah penyelesaian dari SPLDV. Contoh Soal Tentukah penyelesaian dari SPLDV berikut Jawab Langkah pertama tentukan garis dari masing-masing persamaan. Setelah diperoleh grafik dari kedua persamaan, sekarang menentukan titik potong dari kedua garis dan menentukan koordinat dari titik potong tesebut. Dari grafik sistem persamaan linear diatas diperoleh titik potong dengan koordinat , sehingga penyelesaian dari SPLDV adalah . Untuk membuktikan penyelesaian dari SPLDV, penyelesaian tersebut kita subtitusikan ke persamaan dengan dan . Pada metode grafik ini, terdapat beberapa jenis himpunan penyelesaian berdasarkan grafik persamaan, yaitu Jika kedua garis berpotongan, maka perpotonga kedua garis adalah penyelesaian dari SPLDV dan memiliki satu penyelesaian. Jika kedua garis sejajar, maka SPLDV tidak memiliki penyelesaian Jika kedua garis saling berhimpit, maka SPLDV memiliki tak berhingga himpunan penyelesaian. Metode eliminasi Pada metode eliminasi ini, menentukan penyelesaian dari variabel dengan cara mengeliminasi variabel , dan untuk menentukan penyelesaian variabel dengan cara mengeliminasi variabel . Contoh Soal Tentukah penyelesaian dari sistem persamaan linear dua variabel berikut Jawab Pertama menentukan penyelesaian dari variabel . Mengeliminasi variabel dapat dilakukan dengan mengurangi persamaan I dengan persamaan II. Diperoleh persamaan akhir , bagi kedua ruas dengan -2, diperoleh penyelesaian . Kedua menentukan penyelesaian dari variabel Mengeliminasi variabel dapat dilakukan dengan menjumlahkan persamaan I dengan persamaan II. Diperoleh persamaan akhir , bagi kedua ruas dengan 2, diperoleh penyelesaian Sehingga himpunan penyelesaian dari SPLDV tersebut adalah . Metode substitusi Pada metode substitusi, langkah pertama yang dilakukan adalah mengubah salah satu persamaan menjadi persamaan fungsi, yaitu sebagai fungsi dari atau sebagai fungsi dari . Kemudian subtitusikan atau pada persamaan yang lain. Contoh Soal Tentukah penyelesaian dari SPLDV berikut Jawab Ubah persamaan I menjadi bentuk fungsi dengan memindahkan variabel ke ruas kanan menjadi . Kemudian persamaan fungsi disubtitusikan pada persamaan II, menjadi . Diperoleh persamaan dan kurangi masing-masing ruas dengan 1, menjadi . Kemudian bagi kedua ruas dengan 2 menjadi . Hasil variabel disubtitusikan pada salah satu persamaan awal, misal pada persamaan I, menjadi , jadi atau . Sehingga himpunan penyelesaian sistem persamaan linear dua variabel nya adalah . Metode eliminasi-subtitusi Metode ini adalah gabungan dari metode eliminasi dan subtitusi. Pertama eliminasi salah satu variabel, kemudian penyelesaian dari variabel yang diperoleh disubtitusikan pada salah satu persamaan. Coba kerjakan soal di atas dengan menggunakan metode eliminasi-substitusi. Sistem Persamaan Linear Tiga Variabel SPLTV Sistem persamaan linear tiga variabel adalah sistem persamaan yang terdiri dari tiga persamaan dimana masing-masing persamaan memiliki tiga variabel. Contoh SPLTV dengan variabel dan dimana dan adalah bilangan-bilangan real. Pada SPLTV terdapat 2 cara penyelesaian, yaitu Metode Subtitusi Langkah yang dilakukan pada metode ini yaitu Ubah salah satu persamaan yang ada pada sistem dan nyatakan sebagai fungsi dari dan , atau sebagai fungsi dari dan , atau sebagai fungsi dari dan .. Subtitusikan fungsi atau atau dari langkah pertama pada dua persamaan yang lain, sehingga diperoleh SPLDV. Selesaikan SPLDV yang diperoleh dengan metode yang dibahas pada penyelesaian SPLDV di atas. Contoh Soal Tentukan penyelesaian dari sistem persamaan linear tiga variabel berikut . Jawab Langkah pertama, nyatakan persamaan I menjadi fungsi dari , yaitu . Kemudian subtitusikan pada persamaan II dan III, menjadi Persamaan II Selesaikan, didapat Persamaan III Selesaikan, didapat atau . Persamaan IV dan V membentuk SPLDV Dari persamaan V, , kemudian disubtitusikan pada persamaan IV, menjadi Kemudian subtitusikan pada persamaan diperoleh atau . Subtitusikan dan pada persamaan , menjadi , diperoleh . Sehingga himpunan penyelesaian adalah Metode Eliminasi Langkah penyelesaian pada metode eliminasi yaitu Eliminasi salah satu variabel sehingga diperoleh SPLDV Selesaikan SPLDV yang diperoleh dengan langkah seperti pada penyelesaian SPLDV yang telah dibahas Subtitusikan variabel yang telah diperoleh pada persamaan yang ada. Sekarang coba kamu selesaikan contoh soal sistem persamaan linear tiga variabel di atas dengan menggunakan metode eliminasi! Kontributor Fikri Khoirur Rizal Alumni Teknik Elektro FT UI Materi lainnya Induksi Matematika Persamaan Kuadrat Permutasi dan Kombinasi Ilustrasi seorang murid mempelajari persamaan linear dua variabel. Foto iStockDalam matematika, persamaan linear dua variabel adalah persamaan yang memiliki dua variabel dengan pangkat masing-masing variabel sama dengan dari Matematika SMP/MTs Kelas VIII oleh R. Susanto Dwi dkk., pada persamaan linear dua variabel terdapat ciri-ciri sebagai variabel berpangkat satuUntuk memahami lebih jelas mengenai persamaan linear dua variabel, simak pembahasan dan Bentuk Umum Persamaan Linear Dua VariabelIlustrasi bentuk umum persamaan linear dua variabel. Foto Math ProblemsDikutip dari Super Modul Matematika SMP MTs Kelas VII, VIII, IX oleh Yosep Dwi Kristanto dan Russasmita Sri Padmi, persamaan linear dua variabel adalah persamaan yang memiliki bentuk ax + by = c, di mana a, b, dan c adalah bilangan-bilangan asli, serta a dan b keduanya tidak sama dengan nol. Jadi, bentuk umum persamaan linear dua variabel adalah ax + by = c, dengan x dan y disebut antara persamaan linear dua variabel dan sistem persamaan linear dua variabel adalah sebagai linear dua variabel melibatkan satu persamaan persamaan linear dua variabel melibatkan dua persamaan atau lebih. Cara Menentukan Himpunan Penyelesaian Persamaan Linear Dua VariabelUntuk memahami bagaimana cara menentukan himpunan penyelesaian persamaan linear dua variabel, perhatikan contoh mempunyai sepasang bilangan asli dan jumlah kedua bilangan adalah dua, tentukan semua pasangan bilangan yang dimaksud!Berdasarkan soal di atas, misalkan bilangan ke-1 adalah x dan bilangan ke-2 adalah y, maka persoalan di atas dapat ditulis dalam sebuah persamaan linear dua variabel, yaitu x + y = x + y = 2 merupakan suatu persamaan linear dua variabel, yaitu variabel x dan y. Menentukan penyelesaian persamaan x + y = 2 berarti menentukan pasangan-pasangan pengganti x dan y yang mengubah x + y = 2 menjadi kalimat yang memilih pengganti x, kemudian menentukan nilai y, yang mana x dan y adalah bilangan asli, maka akan diperoleh hal-hal x = 1, maka 1 + y = 2 sehingga y = 1. Penyelesaian dari x + y = 2 jika dinyatakan sebagai pasangan berurutan adalah 1, 1. Jadi, himpunan penyelesaian dari x + y = 2 dengan x dan y bilangan asli adalah 1, 1.Contoh Soal Persamaan Linear Dua VariabelIlustrasi seorang murid mengerjakan soal persamaan linear dua variabel. Foto iStockBerikut contoh soal persamaan linear dua variabel. Tentukan apakah persamaan-persamaan berikut merupakan persamaan linear dua variabel atau tidak. Jika iya, ubah persamaan tersebut menjadi bentuk umum dan tentukan a, b, dan linear dua variabel memiliki dua variabel yang masing-masing berpangkat satu.a Persamaan y = x² - 2x + 1 memiliki 2 variabel, yaitu x dan y, tetapi variabel x ada yang memiliki pangkat dua. Oleh karena itu, persamaan ini bukan merupakan persamaan linear dua variabel.b Persamaan y = 10 - x memiliki dua variabel x dan y yang masing-masing memiliki pangkat satu, sehingga persamaan ini termasuk persamaan linear dua variabel. Persamaan tersebut dapat diubah menjadi seperti demikian, diperoleh persamaan umum x + y = 10, dengan a = 1, b = 1, dan c = 10.c Persamaan 2x - 3y = 5z memiliki tiga variabel, yaitu x, y, dan z, sehingga dapat disimpulkan persamaan ini bukan merupakan persamaan linear dua variabel. Apa ciri-ciri persamaan linear dua variabel? Apa perbedaan PLDV dan SPLDV?Apa bentuk umum persamaan linear dua variabel?

diketahui sistem persamaan linear dua variabel